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A B S T R A C T   

When we observe another person’s actions, we process many kinds of information – from how their body moves 
to the intention behind their movements. What kinds of information underlie our intuitive understanding about 
how similar actions are to each other? To address this question, we measured the intuitive similarities among a 
large set of everyday action videos using multi-arrangement experiments, then used a modeling approach to 
predict this intuitive similarity space along three hypothesized properties. We found that similarity in the actors’ 
inferred goals predicted the intuitive similarity judgments the best, followed by similarity in the actors’ move-
ments, with little contribution from the videos’ visual appearance. In opportunistic fMRI analyses assessing 
brain-behavior correlations, we found suggestive evidence for an action processing hierarchy, in which these 
three kinds of action similarities are reflected in the structure of brain responses along a posterior-to-anterior 
gradient on the lateral surface of the visual cortex. Altogether, this work joins existing literature suggesting 
that humans are naturally tuned to process others’ intentions, and that the visuo-motor cortex computes the 
perceptual precursors of the higher-level representations over which intuitive action perception operates.   

1. Introduction 

Watching other people’s actions is a major component of natural 
vision. These actions make up a rich and varied domain of visual input 
— in a typical day, we might see a child building a snowman, someone 
re-stocking shelves at a grocery store, or a runner jogging through a 
park. We not only see these actions, but also understand them — we can 
infer at a glance how experienced the runner is, and that her goal is to 
exercise. Underlying this capacity is a series of social-visual computa-
tions, from higher-level inferences about an actor’s mental state 
(Dodell-Feder et al., 2011; Koster-Hale et al., 2017; Samson et al., 2004), 
to the intermediate-level perceptual representations of individual body 
parts, objects, and physical properties like force and momentum 
(Downing et al., 2001; Rosch et al., 1976; Singh, 2015; Fischer et al., 
2016; Schwettmann et al., 2019; Tarhan and Konkle, 2020). Further, all 
of these computations are initially embedded in early sensory repre-
sentations, which capture lower-level properties like edge orientations 
and motion direction across the visual field (Giese and Poggio, 2003; 
Hubel and Wiesel, 1962). 

Yet, not all of these social-visual computations necessarily influence 
our intuitive perceptions of actions — the things that humans naturally 

notice about actions and that inform our behavior (Vallacher and 
Wegner, 1989). For example, humans can intuitively distinguish be-
tween a person who is jogging for fitness and a person who is running to 
catch a bus. But, many of the properties that the visual system processes 
during action perception — such as edge orientation — may not influ-
ence this level of perception. Thus, our question is: what properties 
underlie this intuitive understanding of actions and what makes them 
similar or different from each other? 

The actors’ intentions are one property that may be tied to our in-
tuitions about action similarity. There is a rich developmental and social 
psychology literature demonstrating that actors’ intentions are key to 
our understanding of actions, and that humans naturally process others’ 
mental lives and goals when watching their actions. For example, infants 
expect others to reach for valuable objects in the most efficient way 
possible and are sensitive to whether an action’s goal was completed 
(Gergely and Csibra, 2003; Jara-Ettinger et al., 2016; Liu et al., 2017; 
Reid et al., 2007; Schachner and Carey, 2013). As adults, we also 
naturally describe actions in terms of their goals, suggesting that they 
are a particularly salient property — we say that someone “gave money 
to a homeless person,” rather than that they “grasped a dollar and 
extended it to a homeless person” (Spunt et al., 2011). In addition, we 
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attribute motives and agency even to simple shapes that move in a way 
that indicates animacy (Heider and Simmel, 1944; see also De Freitas 
and Alvarez, 2018; Isik et al., 2018). Finally, neuroimaging work sug-
gests that we naturally represent other people in terms of the mental 
states that they habitually experience (Thornton et al., 2019a). Regions 
of the brain that process social information even seem to automatically 
predict others’ future mental states (Thornton et al., 2019b) and the next 
event in a narrative (Richardson and Saxe, 2020). All of this research 
suggests that similarities in actors’ goals and intentions may influence 
intuitive perceptions of action similarity, because we naturally process 
these elements of an action when we see it. 

In addition to these inferences about the actor’s mental state, it is 
possible that directly perceptible properties also influence intuitive ac-
tion similarity. For example, perhaps running and walking seem similar 
because they involve similar leg movements, or because they both tend 
to occur outdoors. Recent work on the visual processing of actions has 
identified several such intermediate-level visual features that might in-
fluence intuitive action perception. These include an action’s movement 
kinematics, such as the body parts involved in an action and the 
movement’s speed and direction (e.g., Pitcher and Ungerleider, 2021; 
Tarhan and Konkle, 2020); the people, objects, and spaces that actions 
are directed at (Tarhan and Konkle, 2020); and the general configura-
tion of an actor’s body relative to another person (Abassi and Papeo, 
2020; Isik et al., 2017; Papeo et al., 2017). These properties might in-
fluence intuitive action perception because they are useful for inferring 
an action’s meaning; for example, body position can signal whether two 
actors are interacting (Isik et al., 2017; Papeo et al., 2017) and other 
kinds of motion features may influence moral judgments like blame-
worthiness (De Freitas and Alvarez, 2018). 

Finally, it is possible that even the basic visual appearance of an 
action scene also influences our intuitions about action similarity. 
Increasingly, research on object and scene perception finds that low- and 
mid-level visual features can influence higher-order perceptual pro-
cessing (Greene and Hansen, 2020; Groen et al., 2018; Long et al., 2018; 
Oliva and Torralba, 2006). For example, curvature features can influ-
ence perceptions of real-world size (Long et al., 2018) and distributions 
of spatial orientations differ between indoor and outdoor scenes (Oliva 
and Torralba, 2006). However, these early levels of representation may 
only be useful in initial stages of action analyses without entering into 
our intuitive understanding of actions. 

In the present work, we probe how these different levels of repre-
sentation contribute to intuitive action understanding. To do so, we used 
both behavioral and neuroimaging analyses to explore the nature of 
intuitive action representations. To measure the intuitive similarities 
between a set of short action videos, we used a multi-arrangement task, 
in which participants arranged videos according to their intuitive sim-
ilarity (Kriegeskorte and Mur, 2012). This task has successfully been 
used to study object and scene similarity (e.g., Jozwik et al., 2016; Groen 
et al., 2018). These action stimuli depicted everyday sequences of 
movements – such as chopping vegetables – in naturalistic, 2.5-s videos 
(from Tarhan and Konkle, 2020). Importantly, these videos include the 
contextual information derived from the scene and the action’s effects 
on the surrounding people, objects, and scene, and not just the actor’s 
isolated movements (e.g., Haxby et al., 2020; Tucciarelli et al., 2019). 
These naturalistic and representatively-sampled stimuli contrast with 
targeted approaches that use abstract stimuli like verbs (e.g., Bedny and 
Caramazza, 2011) or tightly controlled videos of a small set of actions (e. 
g., Wurm et al., 2017). This approach makes it easier to draw general 
conclusions about natural action perception (Haxby et al., 2020). 

Next, we operationalized hypotheses drawn from the developmental, 
social, and vision literatures by collecting human judgments of the ac-
tion videos’ similarity along three broad dimensions: the actors’ goals, 
the actors’ movements, and the videos’ visual appearance. We then 
assessed each of these hypotheses, using predictive modeling techniques 
that have been used to study intuitive object and scene perception (e.g., 
Jozwik et al., 2016; Groen et al., 2018). Finally, we mapped regions of 

the visuo-motor cortex that respond according to these different repre-
sentational formats, using a searchlight analysis over an existing fMRI 
dataset (Tarhan and Konkle, 2020). 

To preview, we found that intuitive action similarity judgments are 
best predicted by the actors’ goals, followed by the actors’ movement 
kinematics. Further, our opportunistic analysis of existing fMRI data did 
not reveal any localized regions with a response similarity structure that 
was highly correlated with these intuitive similarities. However, we did 
find tentative evidence for a hierarchical gradient of action processing in 
the visual system, starting with appearance-based similarity in the early 
visual cortex, through movement-based similarity in the lateral occipito- 
temporal cortex, extending to goal-based similarity in the temporo- 
parietal junction. These data thus highlight an action processing hier-
archy within a single, naturalistic action dataset. Overall, these findings 
suggest that humans are naturally tuned to process others’ intentions, 
and to a lesser extent their kinematic properties, when observing their 
actions. 

2. Results 

2.1. Intuitive action similarity judgments 

To investigate the principles guiding the perception of a wide variety 
of actions, we used videos from an existing dataset, depicting 60 
everyday actions (Tarhan and Konkle, 2020). These actions were 
selected from the American Time Use Survey (U.S. Bureau of Labor 
Statistics, 2014), which records the activities that Americans typically 
perform. We chose actions that spanned a range of familiar, everyday 
activities – such as cooking, running, and laughing – and that engaged 
objects, people, and their surroundings. Most actions involved a single 
agent, but a small subset involved two interacting agents (e.g., shaking 
hands). We selected one short (2.5-s) video to depict each of these ac-
tions (see Methods). These videos thus depict a wide range of actions, 
from hand-centric tool actions, like knitting, to aerobic actions that 
engage the whole body, like dancing. In addition, they are richly varied 
in their backgrounds, actors, and lower-level motion features such as 
speed and direction. 

We measured intuitive similarities among these videos using a multi- 
arrangement task adapted from Kriegeskorte and Mur (2012) (Fig. 1a, 
see Methods). In this task, participants watched all 60 action videos. 
Then, they saw a blank white circle surrounded by representative still 
frames from each video. They were told to drag these still frames into the 
circle, then arrange them according to their similarity: stills from videos 
that seemed similar were placed closer together, while stills from videos 
that seemed different were placed further apart (Kriegeskorte and Mur, 
2012). We intentionally gave participants very minimal instructions 
about how to judge similarity; instead, we asked them to do so based on 
their natural intuitions. 

We measured these intuitive similarity judgments in one main 
experiment (Experiment 1; N = 19) and in one replication with new 
participants (Experiment 2; N = 20). The group-level similarity judg-
ments were very consistent across experiments (r = 0.89). We also 
assessed the inter-subject reliability for each experiment by iteratively 
dividing the participants into two groups and then correlating the 
averaged data across groups (see Methods). In both experiments, we 
found moderate inter-subject reliability (average split-half Kendall’s τ-a 
correlation with Spearman-Brown Prophecy correction = 0.51 (Experi-
ment 1), 0.57 (Experiment 2)). 

To visualize the structure in these intuitive similarity judgments, we 
projected the group-level similarities for Experiment 1 into two di-
mensions using multi-dimensional scaling (MDS). Fig. 1b shows the 
resulting projection. The configuration of the actions in this projection 
provides some insight into what kinds of actions participants regarded as 
similar. For example, sports actions (e.g., basketball), cooking actions (e. 
g., chopping), and getting-ready actions (e.g., tying a tie) were all placed 
in distinct clusters in this projection. 
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2.2. Predicting intuitive similarity with guided behavior 

To understand the structure of these intuitive action similarity 
judgments more quantitatively, we used a predictive modeling frame-
work to test what kind of properties could predict perceived action 
similarity the best. To capture properties at different levels of abstrac-
tion, we collected guided similarity judgments based on three different 
dimensions: the videos’ visual appearance, the actors’ movements, and 
the actors’ goals. To gather these judgments, we asked new participants 
to arrange the 60 action videos using the same similarity-based 
arrangement paradigm as before, but with more explicit instructions. 
One group of participants (N = 20) was told, “please arrange these still 
images according to their overall visual similarity,” regardless of the 
actions being performed. This group was encouraged to consider details 
like the colors in the scene and the direction of the actors’ movements. A 
second group (N = 20) was told to arrange the videos based on similarity 
in the “actors’ body movements.” This group was encouraged to 
consider details like whether the actors made large or small movements, 
moved smoothly or suddenly, and what body parts they were using. 
Finally, a third group (N = 20) was told to arrange the videos based on 
similarity in the “actors’ goals.” These tasks were meant to capture 
relatively lower-level visual properties, more intermediate-level kine-
matic properties, and higher-level inferences about the actions. The 
group-level representational dissimilarity matrices (RDMs) from these 
three experiments operationalized our three hypotheses for the kinds of 
information that underlie intuitive action similarity judgments. Sup-
plemental Figure 1 displays the resulting RDMs and their correlations. 
Hereafter, we refer to these matrices as “model RDMs.” 

We then asked how well each model RDM predicted the intuitive 
similarity judgments. To do this, we used linear regression: each model 
RDM was entered into a separate regression to predict the intuitive 
similarity judgments. To estimate the best possible prediction perfor-
mance, we calculated the data’s noise ceiling as a range between the 

25th and 75th percentiles of the data’s split-half reliability (Spearman- 
Brown Prophecy-corrected Kendall’s τ-a = 0.50–0.55 (Experiment 1), 
0.56–0.59 (Experiment 2)). We assessed prediction performance for 
each model RDM using a leave-1-action-out cross-validation procedure: 
the regression was iteratively trained on all intuitive similarity judg-
ments except those involving one held-out action (e.g., the 1,711 simi-
larities between action pairs not involving running), then tested on the 
held-out data (the 59 similarities between running and all other actions). 
Prediction accuracy was calculated by correlating the actual and pre-
dicted intuitive similarities for this held-out data. If a model had high 
prediction accuracy, then the properties that it captures might underlie 
intuitive action similarity judgments. 

Fig. 2a and Table 1 show the results of these analyses. In general, the 
model RDM based on the actors’ goals predicted the data very well, 
while the model RDMs based on the actors’ movements and the videos’ 
visual appearance both predicted the data moderately well (Fig. 2a). 
This conclusion was supported by a 2 × 3 (experiments x model RDMs) 
ANOVA, which revealed a significant main effect of model RDM (F(2, 
354) = 45.9, p < 0.001). Post-hoc comparisons indicate that the visual 
and movement model RDMs did not differ, but both performed signifi-
cantly worse than the goal model RDM (Table 1). There was no main 
effect of experiment (F(1, 354) = 0.21, p = 0.65) and no interaction (F(2, 
354) = 0.41, p = 0.66). Altogether, these results show that the actors’ 
goals predicted intuitive similarity judgments the best of the three hy-
pothesized properties, but the actions’ movements and the videos’ visual 
appearance also predicted these intuitive judgments relatively well. 

These results raise a natural question: how unique are these three 
model RDMs? Do the similarity judgments based on visual appearance 
and movements account for different components of the intuitive simi-
larity judgments, or do they overlap? To address this question, we per-
formed a commonality analysis (Lescroart et al., 2015) to assess how 
much variance in the intuitive similarity judgments was uniquely 
accounted for by each model RDM, and how much was shared between 

Fig. 1. Measuring Intuitive Action Perception. (A) To measure intuitive judgments of action similarity, participants completed an action arrangement task, during 
which they watched the 60 action videos and then arranged key frames from the videos according to their similarity: frames were close together if participants 
thought the videos were similar, or far apart if they thought they were different. (B) Plot of the first two dimensions of a Multi-Dimensional Scaling projection, to 
visualize broad trends in the structure in these intuitive judgments. Actions are plotted close together in this projection if participants consistently judged them to 
be similar. 

L. Tarhan et al.                                                                                                                                                                                                                                  



Neuropsychologia 163 (2021) 108048

4

model RDMs. This analysis was particularly crucial to understanding 
what kinds of information influence the intuitive similarity judgments, 
because the model RDMs captured some overlapping information 
(Supplemental Figure 1). 

Fig. 2b and Table 2 show the results of this analysis. In general, the 
actors’ goals accounted for the most unique variance (green bars in 
Fig. 2b), indicating that this information is sufficient to explain a large 
portion of the explainable variance in the intuitive similarity judgments. 
The actor’s movements accounted for a much smaller amount of unique 
variance, while the videos’ visual appearance did not account for any 
unique variance (see Table 2 for the complete set of results). In combi-
nation, these three model RDMs accounted for roughly all of the 
explainable variance in the intuitive similarity judgments (Experiment 
1: 31%/24%; Experiment 2: 34%/31%). Note that these models 
explained slightly more than the maximum explainable variance, which 
is possible because this is only an estimate of the true maximum. Alto-
gether, these results suggest that the actors’ goals not only predicted the 
intuitive similarity judgments the best of the three model RDMs that we 
tested; they also accounted for far more unique variance in the data. 

2.3. Neural correlates of intuitive action similarity 

In a previous study, we collected functional neuroimaging data while 
a separate set of participants viewed these same videos (Tarhan and 
Konkle, 2020). Here we take advantage of this existing dataset to 
conduct opportunistic exploratory analyses to examine if there are any 
regions that show strong correspondence with the intuitive measure of 
action similarity. Note that in this paradigm, participants passively 
viewed the videos –- no explicit similarity relationships among videos 
were task-relevant in this experiment. 

To assess where in the brain, if anywhere, there is a match between 
the intuitive action similarity judgments and localized neural similarity 
structure, we conducted a whole-brain searchlight repre-sentational 
similarity analysis (RSA; Kriegeskorte et al., 2006). This analysis 
compared the intuitive judgments to representational dissimilarities 
within circumscribed searchlight spheres centered at each voxel in the 
cortex. 

Fig. 2. Predicting Intuitive Action Similarities. (A) To investigate what kinds of properties underlie intuitive action similarities, we tested how well similarity along 
three broad dimensions (model RDMs) predicted the intuitive judgments. Prediction performance was measured for each model RDM in a leave-1-condition-out 
cross-validation procedure. The results are shown for each experiment. Light grey bars indicate the noise ceiling for each experiment. Colored horizontal lines 
indicate the median prediction accuracy for each model RDM, calculated over all iterations of the leave-1-condition-out procedure. Grey dots show the prediction 
performance on each iteration of this procedure (1 dot per held-out condition). (B) Commonality analyses (Lescroart et al., 2015) were used to assess how much of the 
variance explained in the intuitive similarity judgments was shared between the model RDMs, and how much was unique to one model RDM. Venn diagram il-
lustrates the meaning of each color: for example, variance that the goal similarity judgments uniquely explained is shown in green, variance shared between the goal 
and movement similarity judgments is shown in light blue, and variance shared by goal, movement, and visual similarity judgments is shown in dark grey. Light grey 
bars indicate the maximum explainable variance (noise ceiling2) for each experiment. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Table 1 
Results of post-hoc tests investigating the main effect of model RDM.  

Comparison Difference in Means p 

Visual Appearance vs. Movements 0.09 0.06 
Visual Appearance vs. Goals 0.38 <0.001 
Movements vs. Goals 0.29 <0.001  

Table 2 
Commonality Analyses. Results of commonality analyses to investigate how 
much variance in the intuitive similarity judgements each model RDM uniquely 
accounts for, and how much is shared between model RDMs. The maximum 
explainable variance (noise ceiling2) was 24% for the main experiment and 31% 
for the replication.  

Experiment Partition of the Variance % Explained 

Main Experiment Unique to Visual Appearance − 0.02 
Unique to Movements 2.6 
Unique to Goals 16.0 
Visual Appearance & Movements 1.0 
Visual Appearance & Goals 1.7 
Movements & Goals 4.0 
Visual Appearance & Movements & Goals 5.5 

Replication Unique to Visual Appearance 0.6 
Unique to Movements 2.4 
Unique to Goals 17.0 
Visual Appearance & Movements 1.9 
Visual Appearance & Goals 2.0 
Movements & Goals 3.9 
Visual Appearance & Movements & Goals 5.9  
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As our first analysis step, we estimated and visualized how reliable 
the data in these brain search-lights were. To do so, we calculated each 
searchlight’s split-half reliability, correlating the neural RDMs from odd- 
numbered imaging runs with RDMs from even-numbered runs (see 
Methods; Tarhan and Konkle, 2020a). The resulting reliability map 
(Fig. 3a) shows that the searchlight data are quite reliable in the dorsal 
and ventral streams of the visual cortex (max. split-half r = 0.88); 
however, reliability is low in the prefrontal cortex, anterior temporal 
lobe, and medial parietal cortex (min. split-half r = − 0.13). This reli-
ability map serves as a useful guide for interpreting the RSA results: the 
low reliability outside of the visual cortex meant that we could not 
expect to find strong brain-behavior correlations in those regions. 
However, the data had enough signal to observe strong correlations in 
much of the visual cortex. 

Next, we correlated these searchlight RDMs with the intuitive simi-
larity judgments to determine how well the representational structure in 
each searchlight captured the intuitive-level structure. As shown in 
Fig. 3b, we found significant brain-behavior correlations throughout the 
ventral and dorsal visual streams, as well as primary somatosensory 
strip, primary motor strip, premotor cortex, and the medial parietal lobe 
(the areas outlined in grey, which survived voxel-wise permutations (p 
< 0.01) and cluster-level permutations (q < 0.05)). These correlations 
were strongest along the lateral temporal cortex and superior temporal 
cortex, in the vicinity of regions that may represent objects’ functions 
and kinematics (Bracci et al., 2012; Bracci and Peelen, 2013; Leshin-
skaya and Caramazza, 2015). However, these correlations were rela-
tively weak (mean r among significant voxels = 0.11, s.d. = 0.04, range 
= 0.04–0.30), especially considering that the high reliability in these 
regions suggested that it should be feasible to find stronger correlations 
if they exist (maximum split-half reliability r = 0.88). Therefore, these 
results suggest that intuitive similarity judgments do not strongly draw 
on representations in the visual cortex; however, they also leave open 
the possibility that these judgments draw more strongly on representa-
tions in the prefrontal or anterior temporal cortex. We discuss this and 
other possibilities in the Discussion. 

We next examined how well our three hypothesized model RDMs 
could account for these response similarities. Specifically, we examined 
whether the relatively low, intermediate, and higher-level action 

properties would account for the neural response structure in increas-
ingly high-level regions of the visuo-motor cortex, which would reveal a 
hierarchical gradient of action-related processing starting in the visual 
system. 

To investigate this possibility, we first conducted whole-brain 
searchlight RSAs to compare each model RDM to the brain (Fig. 4, left 
panel), with significant relationships outlined in grey (voxel-wise per-
mutation tests: p < 0.01 with permutation-based cluster corrections q <
0.05). These model-searchlight results reveal that much of the ventral 
and dorsal stream has local regional similarity structure that corre-
sponds with the three different similarity measures, to different degrees. 

To visually compare the general topographic distribution of the 
strength of these searchlight correlations over the entire brain, we 
calculated a 3-way winner map, in which each voxel is colored ac-
cording to the model RDM that was most strongly correlated with the 
searchlight RDM centered at that voxel. Only voxels with positive 
model-brain correlations are plotted. Note that no statistical tests were 
conducted over the topographic distribution or strengths of this 3-way 
winner map visualization. Thus these results should be interpreted 
cautiously, and are well-suited for deriving more specific hypotheses 
about the cortical locations with different representational formats, that 
require further testing for confirmation. 

This winner map shows some suggestive evidence for a hierarchical 
progression in the structure of brain responses. That is, the representa-
tional structure in the early visual cortex and parts of right ventral 
temporal cortex is best captured by the model RDM based on visual 
appearance (red), while the structure in the lateral temporal cortex and 
intra-parietal sulcus is best captured by the model RDM based on 
movement kinematics (blue). Finally, regions known to be involved in 
social processing, including the right temporo-parietal junction (TPJ), 
are captured best by the model RDM based on the actors’ goals (green; 
Dodell-Feder et al., 2011; Koster-Hale et al., 2017; Pitcher and Unger-
leider, 2021; Saxe et al., 2004). Note that the TPJ lies just outside of our 
reliable coverage (Fig. 3a), so while this result aligns with strong prior 
evidence in the literature, we avoid drawing strong conclusions from 
this analysis about the representations in this region. 

The progression of best matching models highlights that actions are 
represented based on different properties at different stages of visual 

Fig. 3. Exploratory Searchlight Analysis. Whole-brain searchlight analyses were used to compare intuitive similarity judgments to neural responses measured in a 
separate fMRI experiment (Tarhan and Konkle, 2020). (A) Searchlight split-half reliability map, showing the correlations between neural dissimilarity matrices 
calculated based on even- and odd-numbered imaging runs (see Methods). We have higher confidence in the Representational Similarity Analysis results in voxels 
with higher searchlight reliability. (B) Searchlight results comparing neural response geometries to intuitive judgments of action similarity. Grey lines outline the 
voxels that survived statistical corrections (voxelwise permutation tests at p < 0.01, cluster-level permutation tests at q < 0.05). 
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processing. While this hierarchy echoes previous work on the structure 
of the visual system, to our knowledge this is the first time it has been 
shown (i) specifically for action processing, and (ii) in a single, natu-
ralistic action dataset. It is also notable that some model RDMs were 
more strongly correlated with the representational structure in the vi-
sual cortex than the intuitive similarity judgments were (e.g., max. r =
0.45 for movement similarity judgments, compared to 0.3 for intuitive 
judgments). This further suggests that there was enough signal in the 
data from these regions to pick up on a stronger correlation between the 
brain and the intuitive similarity judgments, if one existed. 

Altogether, these analyses suggest that the representations underly-
ing intuitive action similarity are not cleanly localized to a circum-
scribed region within action-responsive visuo-motor cortex. Rather, we 
found suggestive evidence for an action processing hierarchy that un-
folds across the visual cortex and likely extends into social-processing 
regions in the temporo-parietal junction. 

3. Discussion 

Here we investigated how well properties at different levels of 
abstraction capture behavioral judgments about the intuitive similarities 
among a large set of everyday action videos. We found that the actors’ 
goals strongly predicted these intuitive similarities, while the actors’ 
movements also contributed to these judgments, but visual appearance 
contributed little to nothing. These findings add to existing evidence 
that humans naturally process others’ motivations when they observe 
and compare their actions. To add to this cognitive investigation, we 
found evidence for a representational gradient in the brain, whereby 
early visual cortex represents actions’ visual appearance and higher- 
level visual cortex represents more intermediate-level kinematic infor-
mation. This gradient highlights transitions in the structure of action 
representations along the visual processing stream; notably, we found 
this representational gradient in a single, naturalistic dataset. In the 
following sections, we situate these findings in the literature, highlight 
how this work advances existing methods for understanding action 
processing, and discuss promising next steps. 

3.1. Intuitive action representations in the mind 

Our primary finding was that judgments about the similarity of ac-
tors’ goals was the best predictor of intuitive action similarity judg-
ments. In addition, these goals accounted for the most unique variance 
in the intuitive similarity data. We interpret this to mean that humans 
naturally and intuitively process other actors’ internal motivations and 
thoughts, even in the absence of an explicitly social task. This conclusion 
adds to a rich literature showing that humans automatically represent 
others in terms of their mental states, even from a very young age 
(Gergely and Csibra, 2003; Jara-Ettinger et al., 2016; Liu et al., 2017; 
Reid et al., 2007; Thornton et al., 2019a,b). In addition, we found that 
similarity in the actors’ movements also predicted intuitive judgments 
moderately well and accounted for a smaller amount of unique variance 
in the data. This finding goes beyond our current understanding of the 
factors driving natural action processing, to suggest that kinematic in-
formation also contributes to intuitive action perception. In contrast, 
similarity in the videos’ visual appearance did not account for any 
unique variance in the data, suggesting that lower-level visual properties 
such as color, form, and motion direction do not have much influence on 
natural action perception. 

It is important to note that the multi-arrangement task used here can 
tell us which actions are more similar than others based on an instructed 
property, but not why they are similar. Thus, a natural extension of these 
findings is to investigate the format of these goal- and movement-based 
representations -– that is, what specific features do humans consider 
when estimating the similarity in actors’ goals and movements? For 
example, how important are speed, trajectory, and movement quality (e. 
g., shaky or smooth) for our assessment of the similarity among actions’ 
movements? Do we consider physical variables – such as facial expres-
sion – when inferring actors’ goals? Recent empirical advancements 
provide concrete methods for addressing these questions. For example, 
modeling approaches that learn sparse feature-based representations 
allow researchers to infer the format and dimensionality of the repre-
sentations underlying similarity judgments (Hebart et al., 2020). Addi-
tionally, advances in deep learning models provide tools to explore 
whether image- and video-computable feature spaces match 

Fig. 4. Visualizing the Action Processing Hierarchy. 
To understand which brain regions are most related 
to each of the hypothesized kinds of action similarity, 
separate Representational Similarity Analyses were 
conducted comparing each of the three model RDMs 
to neural responses. RSA results for each model RDM 
are shown on the left, with significant voxels outlined 
in grey. A 3-way winner map (right) was calculated 
by identifying the model RDM with the highest pos-
itive correlation to each searchlight and coloring the 
searchlight’s central voxel according to that RDM. 
The intensity of the color indicates the difference 
between the strongest and next-strongest correlation. 
(For interpretation of the references to color in this 
figure legend, the reader is referred to the Web 
version of this article.)   
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behaviorally-measured similarity spaces. 
Related to this point, we used behavioral judgments, rather than 

image-computable features, to estimate a similarity based on visual 
appearance. But, one concern is whether behavioral similarity judg-
ments can even capture low-level visual properties—do individuals have 
explicit access to this level of representation? Further, if individuals 
spontaneously represent actions in terms of their goals, how can we be 
sure that the similarity judgements based on visual and movement 
properties were not affected by the spontaneous processing of the actors’ 
goals? These are important questions because the logic of our design 
assumes that people can flexibly and accurately report different kinds of 
similarity relationships, given explicit instructions. Empirically, the fact 
that the three kinds of similarity judgments showed distinct and reliable 
variance (Supplementary Figure 1) supports the validity of this 
assumption. Additionally, the fact that these behaviorally-measured 
similarity spaces showed some correspondence with brain similarity 
structure (e.g., with visual appearance similarity showing the strongest 
correspondence with the early visual cortical regions) further supports 
this logic. In general, a strength of our empirical approach is that using 
the same behavioral task with different targeted instructions allows 
these model similarity spaces to be more comparable in their format, 
and the similarity spaces are clearly also behaviorally-relevant. 

3.2. Intuitive action representations in the brain 

In addition, we explored the neural basis of intuitive action percep-
tion. In an opportunistic repre-sentational similarity analysis, we found 
that the representational geometries in regions in the lateral occipito- 
temporal, intra-parietal, and sensorimotor cortices were only weakly 
correlated with intuitive similarity judgments—we did not find strong 
evidence that these regions support intuitive action representations in a 
localized manner. Why? One possibility is that intuitive similarity 
judgments rely on representations that are distributed among a wide-
spread network of brain regions, which would only be detected by a 
larger-scale analysis – such as decoding from a much larger swathe of 
cortex. Another possibility is that these results were influenced by the 
task done in the fMRI scanner. In our data, observers passively viewed 
the videos. Perhaps a different task – such as making intuitive similarity 
judgments between successive videos, for example – would reliably 
engage additional regions with a more goal-based similarity structure, 
or even modulate the similarity structure measured in the visuo-motor 
cortex. 

Keeping these caveats in mind, in the current neuroimaging dataset 
there seems to be a division between intuitive action judgements, which 
rely on fairly abstract information about the actor’s mental states and 
goals, and the visuo-motor cortex, which represents a range of action 
properties that may be the perceptual precursors to higher-level pro-
cessing. Consistently, earlier work by Lestou et al. (2008) also found that 
areas in the visual and parietal cortex were relatively more sensitive to 
the kinematics of actions, than to their goals. And more recently, Pitcher 
and Ungerleider, 2021 have proposed that the visual cortex contains a 
major processing stream dedicated to processing others’ movements. 
This stream sits between the classic “what” and “where” pathways 
(Mishkin et al., 1983), and is thought to process the visual information 
that eventually feeds into more abstract action representations outside 
of the visual cortex. 

This hypothesis suggests that relatively perceptual properties may 
explain the structure in the visuo-motor cortex well, but fall short of 
predicting intuitive judgments well. In line with this idea, we found that 
the visual cortex was more strongly correlated with actions’ visual 
appearance and movements than it was with the intuitive similarities 
(Figs. 3b and 4). In addition, our previous work (Tarhan and Konkle, 
2020) indicated that the body parts and targets involved in an action, 
whether an action is 

directed at a person (sociality), and the scale of space at which it 
affects the surroundings (interaction envelope) all predict responses in 

this cortex well. In contrast to their prominence in the visuo-motor 
cortex, these properties only predicted intuitive similarity judgments 
moderately well (Supplemental Figure 2). The perceptual precursors 
computed en route to intuitive action representations may also include 
some functional information (such as how bodies and object interact, or 
whether the action creates something new), which explains action re-
sponses in the parietal and lateral occipito-temporal cortices (Thornton 
and Tamir, 2019; Bracci et al., 2012; Bracci and Peelen, 2013; Leshin-
skaya and Caramazza, 2015; Tucciarelli et al., 2019). While this func-
tional information may seem more abstract than an action’s visual 
appearance, it may still be less abstract than the mental state informa-
tion that scaffolds intuitive similarity judgments. Altogether, this evi-
dence supports the notion that the visuo-motor cortex computes the 
perceptual precursors of the higher-level representations over which 
intuitive action perception operates. 

Where, then, does the brain house these intuitive action represen-
tations? Given that the actors’ goals predicted intuitive judgments very 
well, it is likely that the answer lies in regions involved in representing 
others’ mental states or personal attributes. These include the medial 
prefrontal cortex (mPFC), the anterior temporal lobe (ATL), and the 
temporo-parietal junction (TPJ; Dodell-Feder et al., 2011; Koster-Hale 
et al., 2017; Samson et al., 2004; Saxe et al., 2006; Thornton and Tamir, 
2019). Others have implicated regions in the ventral premotor cortex (e. 
g. Lestou et al., 2008, see also Sitnikova et al., 2014; Lingnau and Petris, 
2013). We did not find strong correlations between any of these regions 
and the intuitive similarity judgments. However, this does rule out the 
possibility that these regions are involved in intuitive action perception. 
Recall that our reliability analysis revealed that our data are very reli-
able in the visuo-motor cortex, but much less reliable in the mPFC, ATL, 
and TPJ. This pattern of reliability makes it virtually impossible to find 
strong correlations in these social-processing regions, even if they truly 
are involved in intuitive action perception. 

Interpreting our results in light of reliability sets this work apart, 
because it allows us to qualify which results are informative, and which 
are not. In any fMRI study, some regions will be more reliable than 
others (Tarhan and Konkle, 2020a; Eklund et al., 2016). In our case, if 
we had not accounted for these variations in reliability, we might have 
concluded that parts of the visual cortex are moderately related to 
intuitive action perception, while mPFC and ATL are not related at all. In 
contrast, when we account for these variations, we conclude that these 
parts of visual cortex are most likely not related to intuitive action 
perception, while mPFC and ATL may be related to these intuitions. This 
is because reliability in the visual cortex regions was so high that we 
could have found much stronger correlations if they existed. In contrast, 
reliability in mPFC and ATL was too low to pick up on correlations even 
if they existed. This difference in our interpretations before and after 
taking reliability into account highlights the importance and power of 
reliability analyses for interpreting cognitive neuroscience results. 

4. Methods 

4.1. Data availability 

All data, stimuli, and main analysis scripts are available on the Open 
Science Framework repository for this paper (https://osf.io/d5j3h/). 

4.2. Experimental procedures 

4.2.1. Participants 
113 participants were recruited through the Harvard Psychology 

Department for in-lab action arrange-ment studies. These participants 
were either paid $15 or given course credit. Data were excluded from. 

15 participants because of incomplete or unreliable data (partici-
pant-level noise ceilings <0.1). All participants gave informed consent 
in accordance with the Harvard University Institutional Review Board 
and the Declaration of Helsinki. 
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4.2.2. Stimuli 
The stimuli consisted of 60 videos depicting everyday actions (Tar-

han and Konkle, 2020). The 60 actions were selected from the American 
Time Use Survey (U.S. Bureau of Labor Statistics, 2014), which surveyed 
a large sample of Americans about the activities that make up their days. 
The videos were edited to 2.5 s in duration, with a square (512 × 512 
pixel) frame centered on the main actor. 

4.3. Multi-arrangement task 

In two experiments, participants (Experiment 1: N = 19, 7 males, 
mean age: 21.5 years; Experiment 2: N = 20, 6 males, mean age: 21.7 
years) completed a multi-arrangement task adapted from Kriegeskorte 
and Mur (2012) (Fig. 1a). First, they watched all 60 videos without 
sound. The videos were played in a randomized order without breaks in 
full-screen mode (monitor dimensions: 18.75 × 10.5 inches). Once the 
videos had finished playing, the multi-arrangement task began. On each 
trial of this task, participants saw a blank white circle surrounded by key 
frame images from the videos. They were told to drag the images into the 
circle, then arrange them so that images from similar videos were closer 
together and images from different videos were further apart. They were 
also told that there was no “right” way to arrange the videos; rather, they 
should use their intuitions to decide how similar the videos were. Once 
they had arranged all of the key frame images in the circle, they could 
continue on to the next trial; there was no time limit for each trial. In 
addition, they could re-play any video as much as they wanted in a 
separate window, to remind themselves of what it looked like. 

In order to collect reliable data in an efficient way, we used a “lift- 
the-weakest” algorithm (Kriegeskorte and Mur, 2012) to determine 
which key frames to show on each trial. On the first trial, participants 
arranged key frames from all 60 videos. Then, they completed approx-
imately 20–70 subsequent trials where they arranged key frames from a 
sub-set of the 60 videos. The algorithm selected key frames just before 
each trial, based on an accumulated evidence criterion (signal-to-noise 
ratio2). Evidence scores were calculated for each pair of videos after 
each trial. Pairs received a low evidence score if the actions had not been 
arranged relative to each other many times, or if they had been arranged 
inconsistently during prior trials. Key frames from these actions were 
more likely to be presented in subsequent trials, in order to measure 
their perceived similarities more accurately. Often, low evidence action 
pairs had been placed very close to each other within a cluster – focusing 
on these clusters during subsequent trials allowed us to capture the 
finer-grained distances among actions within a cluster. The trials 
continued until all action pairs achieved a minimum evidence criterion 
of 0.5 or the experiment timed out (after 60 min, excluding time for 
breaks). 

At the end of the experiment, the data consisted of the lower triangle 
of a distance matrix between all action videos. Each cell (i, j) contained 
the estimated Euclidean distance between videos i and j, built up over 
trials. This estimate was calculated using an inverse multi-dimensional 
scaling algorithm to infer distances between videos that were pre-
sented on-screen in different sub-sets. In addition, these distances were 
normalized to account for the fact that different trials presented 
different numbers of key frames within the same amount of screen space. 
More details on the lift-the-weakest algorithm, inverse multi- 
dimensional scaling, and normalizing procedures can be found in Krie-
geskorte and Mur (2012). 

4.4. Guided similarity judgments 

To measure the actions’ similarity according to specific kinds of 
properties, we also ran a variant of the multi-arrangement task with 
more explicit instructions, with new participants. One group (N = 20) 
was instructed to arrange key frame images from the 60 action videos 
according to similarity in their overall visual appearance. Specifically, 
they were told, “Please arrange these still images according to their 

overall visual similarity, regardless of the actions in the videos”, and 
during the practice trials the experimenter encouraged participants to 
take information like the colors and the direction of the movements into 
account when arranging the actions. Another group (N = 20) was 
instructed to arrange the key frames according to similarity in the ac-
tors’ manner of movement. This group was told, “Please arrange these 
still images according to the actors’ body movements”, and during the 
practice trials the experimenter encouraged them to pay attention to the 
body parts being used, the amount of movement in the video, whether it 
was smooth or abrupt, et cetera. A third group (N = 20) was instructed to 
arrange the key frames according to similarity in the actors’ goals. They 
were told, “Please arrange these still images according to similarity in 
the actors’ goals.” Distance matrices were averaged across participants 
for each of these conditions, producing three model RDMs that were 
used to predict the intuitive similarity judgments measured in the multi- 
arrangement task. 

4.5. fMRI data 

We used data from Tarhan and Konkle (2020) to analyze neural re-
sponses to the same action videos as were used in the multi-arrangement 
task. In that experiment, 13 participants completed a 2-h fMRI scanning 
session, during which they passively viewed the videos and detected an 
occasional red frame around the videos to maintain alertness. Further 
details about these data can be found in Tarhan and Konkle (2020) and 
at the paper’s Open Science Framework repository (https://osf. 
io/uvbg7/). 

4.6. Multi-dimensional scaling analysis 

Multi-Dimensional Scaling (MDS) was performed over the intuitive 
similarity judgments from Ex-periment 1, to visualize the overall 
structure in these judgments. The distance matrices measured in the 
multi-arrangement task were averaged across individual participants 
and non-metric MDS was performed over this group-averaged distance 
matrix in MATLAB. We extracted the first two dimensions of the 
resulting projection and plotted them as a scatterplot (Fig. 1b). Note that 
we extracted two dimensions for ease of visualization, but stress plots 
indicated that four dimensions would more fully capture the structure of 
the data. 

4.7. Modeling analyses 

4.7.1. Noise ceilings 
We used a split-half procedure to calculate the noise ceiling for the 

intuitive similarity judgements, to provide a reference for how well we 
could expect any model to predict the intuitive similarity judgments 
given the data’s inherent noise. We randomly divided individual par-
ticipants into two groups, then averaged the distance judgments over all 
participants in each group and calculated the Kendall’s τ-a correlation 
between the groups. This procedure was repeated 100 times, to build up 
a distribution of split-half correlation values. We then corrected for the 
effects of splitting the data by applying a Spearman-Brown Prophecy 
Correction. We estimated the noise ceiling as a range from this distri-
bution’s 25th percentile to its 75th percentile. 

4.8. Predictive modeling 

We used cross-validated regression to assess how well the three 
model RDMs – the judgments about the videos’ visual appearance, 
movements, and the actors’ goals – could predict the intuitive similarity 
judgments. First, we averaged the intuitive similarity judgments across 
all participants, and both these 

and the model RDMs were z-normalized so that they had a mean 
value of 0 and a standard deviation of 

1. Then, we iteratively fit an Ordinary Least Squares regression to the 
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intuitive similarity judgments for each model RDM. On each iteration, 
we held out the data from one action (distances between 59 pairs of 
actions) and fit the model using the data from 59/60 videos (1711 pairs). 
We then calculated the predicted intuitive similarity judgments for the 
held-out data using the weights fit on the training data. Because each 
pair of actions was held out twice during this cross-validation procedure 
(once when holding out all pairs involving action i and again when 
holding out all pairs involving action j), we averaged over the two 
predicted intuitive similarities to obtain a single predicted intuitive 
similarity judgment for each pair. Finally, to assess how well each model 
RDM predicted the held-out data across these iterations, we correlated 
the predicted similarity judgments with the actual similarity judgments 
using Kendall’s τ-a correlation. This correlation was calculated sepa-
rately for each iteration —- over the pairs that were held out during that 
iteration —- and then averaged over the iterations. This entire procedure 
was performed separately for each model RDM and each of the two 
experiments. 

4.9. Comparing predictive models 

To compare the model RDMs’ prediction performance across ex-
periments, we conducted a 3 × 2 (model RDMs x experiments) ANOVA. 
We accounted for the fact that noise ceilings differed across experiments 
by re-scaling the prediction results as a proportion of the noise ceiling’s 
lower bound. Post-hoc tests were run to investigate any significant main 
effects, using the Tukey-Kramer correction for multiple comparisons. 

4.10. Commonality Analyses 

Commonality Analyses were used to assess how much each model 
RDM’s prediction performance reflected its ability to account for unique 
variance in the intuitive similarity judgments, and how much was shared 
with other model RDMs. To do this, we followed the procedure 
described in Lescroart et al. (2015). 

First, we ran seven regressions, using all possible combinations of the 
three model RDMs to predict the intuitive similarity judgments. That is, 
we ran one regression predicting the intuitive judgments with all three 
model RDMs: one with the goal- and movement-based RDMs; one with 
just the goal-based RDM, and so on. For each regression, we estimated 
the squared leave-1-condition-out prediction value (Kendall’s τ-a2), 
which is an approximation of the amount of variance explained in the 
intuitive judgments by the predictors entered into that regression. 

To calculate the amount of variance in the intuitive similarities that 
was uniquely explained by a model RDM (e.g., goal-based similarity), 
we subtracted the τ-a2 value for the combination of the other two model 
RDMs from the τ-a2 value for the combination of all three RDMs. For 
example, the unique variance (UV) explained by goal-based similarity 
was calculated as: 

UVG = T2
G, M, and A − T2

M and A  

where 
G = similarity based on goals 
M = similarity based on movements 
A = similarity based on appearance. 
We calculated the amount of variance shared by all three model 

RDMs (SV) as: 

SVG,M, and A = T2
G + T2

M + T2
A − 2 × T2

G,M, and A + UVG + UVM + UVA 

Finally, the amount of variance shared between the goal and 
movement model RDMs (but not the appearance RDM) was: 

SVG and M = T2
G + T2

M − T2
G and M − SVG,M, and A 

To calculate the total explainable variance in the data, we simply 
squared the noise ceiling range for each experiment. 

4.11. Whole-brain searchlight analyses 

Whole-brain searchlight representational similarity analyses were 
conducted to map out where, if any-where, the brain’s representational 
geometry matches the structure in the intuitive similarity judgments. 
For each grey-matter voxel, we calculated a neural Representational 
Dissimilarity Matrix (RDM) based on the responses from grey-matter 
voxels within 9 mm (3 voxels) of that voxel. On average, each search-
light contained 121.3 voxels (s.d. = 4.5). Neural RDMs were calculated 
over the voxels in the searchlight using the correlation distance between 
the response patterns for each pair of actions. 

4.12. Searchlight reliability 

Before comparing these neural RDMs to the behavior, we assessed 
the reliability of the RDM in each search sphere. To do this, we calcu-
lated separate neural RDMs using data from odd- and even-numbered 
imaging runs. Then, we correlated these splits of the data, resulting in 
a map of search sphere reliability across the cortex (Fig. 3a). This pro-
cedure is a variation on the one described in Tarhan and Konkle (2020a). 

4.13. Searchlight representational similarity 

To compare these neural response geometries to the structure in the 
intuitive similarity judgments, we calculated the Pearson’s correlation 
between the group-level intuitive similarity judgments and the neural 
RDM in each search sphere (Fig. 3b). Correlations were considered 
significant for voxels that survived voxel-wise permutation tests (p <
0.01) and permutation-based cluster corrections (q < 0.05). We also 
repeated this process for each of the three model RDMs. 

4.14. Three-way winner map 

To compare the whole-brain searchlight results across model RDMs, 
we calculated a 3-way winner map (Fig. 4). In this map, we colored 
voxels according to the model RDM with the highest positive correlation 
with the neural RDM centered on that voxel. When there was a tie for the 
highest correlation, voxels were colored grey to indicate a lack of pref-
erence. In addition, the voxels’ saturation reflects the difference be-
tween the highest and next-highest correlations: voxels where one 
model RDM clearly dominated the others are colored more deeply. This 
analysis reflects an exploratory visualization using group-level data. As 
such, no statistics were done over this map. 
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